Back to top

A multi‐objective genetic algorithm strategy for robust optimal sensor placement

The performance of a monitoring system for civil buildings and infrastructures or mechanical systems depends mainly on the position of the deployed sensors. At the current state, this arrangement is chosen through optimal sensor placement (OSP) techniques that consider only the initial conditions of the structure. The effects of the potential damage are usually completely neglected during its design.

English

Use of the cointegration strategies to remove environmental effects from data acquired on historical buildings

The theory of cointegration, usually employed in econometric studies, has proved very powerful in the context of Structural Health Monitoring (SHM), where it can be used to distinguish operational and environmental changes of dynamic features from those related to the evolution of damage. The different nature of the effects imposed by operational and environmental variations on structural response required here an extension of the theory of cointegration from the linear to the nonlinear field. For this purpose, a nonlinear multivariate regression has been developed.

English

Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the Inverse Finite Element Method

The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, the incremental strains are used to evaluate the incremental displacements which in turn update the geometry of the deformed structure.

English

Single and multiple crack localization in beam-like structures using a Gaussian process regression approach

A crack or a localized damage in a structure provokes a discontinuity in the rotation. Consequently, mode-shapes are nonsmooth at the damage position and the first derivative (strictly related to the rotation) presents a jump discontinuity. Based on this simple concept, a new approach has been developed in order to predict the location of the mode-shape derivative discontinuities, and therefore the location of damage, without the need to directly differentiate.

English

The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool

Recently, features and techniques from speech processing have started to gain increasing attention in the Structural Health Monitoring (SHM) community, in the context of vibration analysis. In particular, the Cepstral Coefficients (CCs) proved to be apt in discerning the response of a damaged structure with respect to a given undamaged baseline. Previous works relied on the Mel-Frequency Cepstral Coefficients (MFCCs).

English

Using Video Processing for the Full-Field Identification of Backbone Curves in Case of Large Vibrations

Nonlinear modal analysis is a demanding yet imperative task to rigorously address real-life situations where the dynamics involved clearly exceed the limits of linear approximation. The specific case of geometric nonlinearities, where the effects induced by the second and higher-order terms in the strain–displacement relationship cannot be neglected, is of great significance for structural engineering in most of its fields of application—aerospace, civil construction, mechanical systems, and so on.

English

An experimental study of the feasibility of phase-based video magnification for damage detection and localisation in operational deflection shapes

Optical measurements from high‐speed, high‐definition video recordings can be used to define the full‐field dynamics of a structure. By comparing the dynamic responses resulting from both damaged and undamaged elements, structural health monitoring can be carried out, similarly as with mounted transducers. Unlike the physical sensors, which provide point‐wise measurements and a limited number of output channels, high‐quality video recording allows very spatially dense information. Moreover, video acquisition is a noncontact technique.

English

Pages